metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊4F5, C5⋊(C24⋊3C4), (C23×C10)⋊7C4, (C23×D5)⋊11C4, D5.3C22≀C2, (D5×C24).4C2, C23.52(C2×F5), D10⋊5(C22⋊C4), D10.102(C2×D4), C22⋊2(C22⋊F5), (C22×F5)⋊1C22, (C22×D5).149D4, C22.101(C22×F5), (C22×D5).281C23, (C23×D5).136C22, (C2×C22⋊F5)⋊6C2, (C2×C10)⋊2(C22⋊C4), C2.41(C2×C22⋊F5), C10.41(C2×C22⋊C4), (C22×C10).76(C2×C4), (C2×C10).94(C22×C4), (C22×D5).130(C2×C4), SmallGroup(320,1138)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊4F5
G = < a,b,c,d,e,f | a2=b2=c2=d2=e5=f4=1, ab=ba, ac=ca, faf-1=ad=da, ae=ea, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >
Subgroups: 2426 in 506 conjugacy classes, 80 normal (9 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C23, C23, D5, D5, C10, C10, C22⋊C4, C22×C4, C24, C24, F5, D10, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C25, C2×F5, C22×D5, C22×D5, C22×D5, C22×C10, C22×C10, C24⋊3C4, C22⋊F5, C22×F5, C23×D5, C23×D5, C23×C10, C2×C22⋊F5, D5×C24, C24⋊4F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, F5, C2×C22⋊C4, C22≀C2, C2×F5, C24⋊3C4, C22⋊F5, C22×F5, C2×C22⋊F5, C24⋊4F5
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 23)(2 25 5 21)(3 22 4 24)(6 28)(7 30 10 26)(8 27 9 29)(11 33)(12 35 15 31)(13 32 14 34)(16 38)(17 40 20 36)(18 37 19 39)
G:=sub<Sym(40)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23)(2,25,5,21)(3,22,4,24)(6,28)(7,30,10,26)(8,27,9,29)(11,33)(12,35,15,31)(13,32,14,34)(16,38)(17,40,20,36)(18,37,19,39)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23)(2,25,5,21)(3,22,4,24)(6,28)(7,30,10,26)(8,27,9,29)(11,33)(12,35,15,31)(13,32,14,34)(16,38)(17,40,20,36)(18,37,19,39) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,23),(2,25,5,21),(3,22,4,24),(6,28),(7,30,10,26),(8,27,9,29),(11,33),(12,35,15,31),(13,32,14,34),(16,38),(17,40,20,36),(18,37,19,39)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 2N | ··· | 2S | 4A | ··· | 4H | 5 | 10A | ··· | 10O |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 10 | ··· | 10 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C4 | C4 | D4 | F5 | C2×F5 | C22⋊F5 |
kernel | C24⋊4F5 | C2×C22⋊F5 | D5×C24 | C23×D5 | C23×C10 | C22×D5 | C24 | C23 | C22 |
# reps | 1 | 6 | 1 | 6 | 2 | 12 | 1 | 3 | 12 |
Matrix representation of C24⋊4F5 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 35 |
0 | 0 | 0 | 0 | 6 | 35 |
0 | 9 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 6 | 35 | 0 | 0 |
0 | 0 | 40 | 35 | 0 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,40,6,0,0,0,0,35,35],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,1,0,0,0,0,0,0,1,0,0] >;
C24⋊4F5 in GAP, Magma, Sage, TeX
C_2^4\rtimes_4F_5
% in TeX
G:=Group("C2^4:4F5");
// GroupNames label
G:=SmallGroup(320,1138);
// by ID
G=gap.SmallGroup(320,1138);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,422,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^5=f^4=1,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations